Exercice 1:

- 1. $u_3 = u_0 + 3r$ donc $u_0 = u_3 3r = 16 6 = 10$.
- 2. $\forall n \in \mathbb{N}, \ u_n = x + nr \text{ et } v_n = x.q^n.$ On a égalité entre les eux pour x = 0.

Exercice 2:

- 1. $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raions -1 donc $\forall n\in\mathbb{N},\ u_n=3\times(-1)^n$.
- 2. (a) Recherche du point fixe

Soit
$$x \in \mathbb{R}$$
. $x = 2x + 1 \Leftrightarrow x = -1$

(b) Recherche de la raison de la suite auxiliaire

On pose :
$$\forall n \in \mathbb{N}, \ w_n = u_n - (-1) = u_n + 1.$$

$$\forall n \in \mathbb{N}, \ w_{n+1} = u_{n+1} + 1 = 2u_n + 1 + 1 = 2(u_n + 1) = 2w_n$$

La suite $(w_n)_{n\geq 0}$ est donc une suite géométrique de raison 2 et de premier terme $w_o=u_0+1=1$.

$$\forall n \in \mathbb{N}, \ w_n = 2^n$$

(c) Expression du terme général De plus, $\forall n \in \mathbb{N}, u_n = w_n - 1$. Donc,

$$\forall n \in \mathbb{N}, \ u_n = 2^n - 1$$

3. (a) Recherche du point fixe

Soit
$$x \in \mathbb{R}$$
. $x = 1 - x \Leftrightarrow x = \frac{1}{2}$

(b) Recherche de la raison de la suite auxiliaire

On pose:
$$\forall n \in \mathbb{N}, \ w_n = u_n - \frac{1}{2}$$
.

$$\forall n \in \mathbb{N}, \ w_{n+1} = u_{n+1} - \frac{1}{2} = 1 - u_n - \frac{1}{2} = \frac{1}{2} - u_n = -w_n$$

La suite $(w_n)_{n\geq 0}$ est donc une suite géométrique de raison -1 et de premier terme $w_o=u_0-\frac{1}{2}=-\frac{3}{2}$.

$$\forall n \in \mathbb{N}, \ w_n = -\frac{3}{2} \times (-1)^n$$

(c) Expression du terme général

De plus,
$$\forall n \in \mathbb{N}, \ u_n = w_n + \frac{1}{2}$$
. Donc,

$$\forall n \in \mathbb{N}, \ u_n = -\frac{3}{2} \times (-1)^n + \frac{1}{2}$$

4. On conjecture que $\forall n \in \mathbb{N}, \ u_n = 2^{2^n}$.

I Pour
$$n = 0$$
, $u_0 = 2^{2^0} = 2^1 = 2$ donc $P(0)$ est vraie.

$$\underline{\mathbf{H}}$$
 Soit $n\geq 0$ tel que $P(n)$ soit vraie.
$$u_{n+1}=u_n^2=(2^{2^n})^2=2^{2\times 2^n}=2^{2^{n+1}}\ \mathrm{donc}\ P(n+1)\ \mathrm{est}\ \mathrm{vraie}.$$

Exercice 3:

1. L'équation caractéristique associée à cette suite est $x^2 = 4x - 4$ de discriminant $\Delta = 16 - 16 = 0$. Cette équation admet donc une racine double $x = \frac{4}{2} = 2$. On en déduit la forme du terme général de la suite u

$$\exists (A,B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = (A+nB) \times 2^n$$

Les deux premiers termes de la suite imposent les valeurs de A et de B.

$$\begin{cases} u_0 = A = 1 \\ u_1 = (A+B) \times 2 = 0 \end{cases} \Leftrightarrow \begin{cases} A = 1 \\ B = -1 \end{cases}$$

L'unique suite définie dans l'énoncé a un terme général de la forme : $\forall n \in \mathbb{N}, \ u_n = (1-n)2^n$.

2. L'équation caractéristique associée à cette suite est $x^2 + 2x - 3 = 0$ de discriminant $\Delta = 4 + 12 = 16 > 0$. Cette équation admet deux racines $x_1 = \frac{-2+4}{2} = 1$ et $x_2 = -3$. On en déduit la forme du terme général de la suite u

$$\exists (A, B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = A + B(-3)^n$$

Les deux premiers termes de la suite imposent les valeurs de A et de B.

$$\begin{cases} u_0 = A + B = 1 \\ u_1 = A - 3B = 2 \end{cases} \Leftrightarrow \begin{cases} B = -\frac{1}{4} \\ A = \frac{3}{4} \end{cases}$$

L'unique suite définie dans l'énoncé a un terme général de la forme : $\forall n \in \mathbb{N}, \ u_n = \frac{3 - (-3)^n}{4}$.

3. On va modifier l'équation en $\forall n \in \mathbb{N}, \ u_{n+2} + 25u_{n+1} - 8u_n = 0.$ L'équation caractéristique associée à cette suite est $x^2 + 2x - 3 = 0$ de discriminant $\Delta = 4 + 12 = 16 > 0$. Cette équation admet deux racines $x_1 = \frac{-2+4}{2} = 1$ et $x_2 = -3$.

Exercice 4:

- 1. $u_1 = 3u_0 + 2w_0 = 7$, $v_1 = 3w_0 + 2u_0 = 8$, $u_2 = 3u_1 + 2w_1 = 37$ et $w_2 = 3w_1 + 2u_1 = 38$.
- 2. On dit qu'une suite $(t_n)_{n\in\mathbb{N}}$ est constante lorsque : $\forall n\in\mathbb{N},\ t_{n+1}t_n$. La valeur de la constante est ensuite donnée par la valeur du premier terme.

$$\forall n \in \mathbb{N}, \ u_{n+1} - w_{n+1} = 3u_n + 2w_n - (3w_n + 2u_n) = u_n - w_n$$

La suite $(u_n - w_n)_{n \in \mathbb{N}}$ est donc constante et vaut $u_0 - w_0 = -1$. En particulier,

$$\forall n \in \mathbb{N}, w_n = u_n + 1$$

3. On doit montrer que la suite $(u_n)_{n\in\mathbb{N}}$ vérifie une relation de récurrence de la forme : $\forall n\in\mathbb{N},\ u_{n+1}=au_n+b$.

$$\forall n \in \mathbb{N}, \ u_{n+1} = 3u_n + 2w_n = 3u_n + 2(u_n + 1) = 5u_n + 2$$

La suite u est bien une suite arithmético-géométrique.

- 4. On va appliquer la méthode qui permet d'obtenir l'expression du terme général à partir de la formule de récurrence.
 - (a) Recherche du point fixe

Soit
$$x \in \mathbb{R}$$
. $x = 5x + 2 \Leftrightarrow x = \frac{2}{-4} = \frac{-1}{2}$

(b) Recherche de la raison de la suite auxiliaire

On pose:
$$\forall n \in \mathbb{N}, \ t_n = u_n - \left(\frac{-1}{2}\right) = u_n + \left(\frac{1}{2}\right).$$

$$\forall n \in \mathbb{N}, \ t_{n+1} = u_{n+1} + \frac{1}{2} = 5u_n + 2 + \frac{1}{2} = 5u_n + \frac{5}{2} = 5\left(u_n + \frac{1}{2}\right) = 5t_n$$

La suite $(t_n)_{n\geq 0}$ est donc une suite géométrique de raison 5 et de premier terme $t_o=u_0+\frac{1}{2}$.

$$\forall n \in \mathbb{N}, \ t_n = \frac{3}{2} \times 5^n$$

(c) Expression du terme général

De plus,
$$\forall n \in \mathbb{N}, \ u_n = t_n - \left(\frac{1}{2}\right)$$
. Donc,

$$\forall n \in \mathbb{N}, \ u_n = \frac{3}{2} \times 5^n - \frac{1}{2}$$

Enfin, $\forall n \in \mathbb{N}, \ w_n = u_n + 1.$ Donc,

$$\forall n \in \mathbb{N}, \ w_n = \frac{3}{2} \times 5^n + \frac{1}{2}$$

Exercice 5:

1. La fonction f est définie et dérivable sur $\mathbb{R}\setminus\{-2\}$ comme quotient de fonctions dérivables avec un dénominateur qui ne s'annule pas.

$$\forall x \in \mathbb{R} \setminus \{-2\}, \ f'(x) = \frac{2(x+2) - (2x+1)}{(x+2)^2} = \frac{3}{(x+2)^2} > 0$$

La fonction f est strictement croissante sur \mathbb{R}_+ donc $\forall x \in \mathbb{R}_+, f(x) \geq f(0)$.

Or, $f(0) = \frac{1}{2}$ donc on a bien $\forall x \in \mathbb{R}_+, f(x) \ge 0$.

- 2. Pour $n \in \mathbb{N}$, on note P(n): " $u_n \ge 0$ ".
 - I: $u_0 = 2$ donc P(0) est vraie.
 - **H**: Soit $n \in \mathbb{N}$ tel que P(n) soit vraie.

$$u_{n+1} = f(u_n)$$
. Or, $u_n \ge 0$ donc, pas la question 1, $u_{n+1} = f(u_n) \ge 0$.

Donc, on a bien $\forall n \in \mathbb{N}, u_n \geq 0$.

3. Soit $n \in \mathbb{N}$.

$$t_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 1} = \frac{\frac{2u_n + 1}{u_n + 2} - 1}{\frac{2u_n + 1}{u_n + 2} + 1} = \frac{\frac{u_n - 1}{u_n + 2}}{\frac{3u_n + 3}{u_n + 2}} = \frac{u_n - 1}{3(u_n + 1)} = \frac{1}{3}t_n$$

La suite $(t_n)_{n\geq 0}$ est donc géométrique de raison $\frac{1}{3}$.

- 4. Le premier terme est $t_0 = \frac{1}{3}$ donc $\forall n \in \mathbb{N}, \ t_n = \frac{1}{3^{n+1}}$.
- 5. Soit $n \in \mathbb{N}$.

$$t_n = \frac{u_n - 1}{u_n + 1} \Leftrightarrow t_n(u_n + 1) = u_n - 1 \Leftrightarrow u_n = \frac{-1 - t_n}{t_n - 1} = \frac{1 + t_n}{1 - t_n}$$

donc,
$$\forall n \in \mathbb{N}, \ u_n = \frac{1 + \frac{1}{3^{n+1}}}{1 - \frac{1}{3^{n+1}}} = \frac{3^{n+1} + 1}{3^{n+1} - 1}.$$